info@buecher-doppler.ch
056 222 53 47
Warenkorb
Ihr Warenkorb ist leer.
Gesamt
0,00 CHF
  • Start
  • Branch Point Mitigation of Thermal Blooming Phase Compensation Instability

Branch Point Mitigation of Thermal Blooming Phase Compensation Instability

Angebote / Angebote:

Thermal blooming can have a major impact on high-energy laser (HEL) beam propagation in the atmosphere. In theory, an adaptiveoptics (AO) system can mitigate the nonlinear optical effects induced by thermal blooming, however, when a single deformable mirror is used for phase-only compensation, analysis predicts the possibility of instability. This instability is appropriately termed phase compensation instability (PCI) and arises with the time-dependent development of spatial perturbations found within the HEL beam. These spatial perturbations act as local hot spots that produce negative-lens-like optical effects in the atmosphere. An AO system corrects for the hot spots by applying positive-lens-like phase compensations. In turn, this increases the strength of the thermal blooming and leads to a runaway condition, i.e. positive feedback in the AO control loop. This study uses a series of computational wave-optics experiments to explore the conditions for insipient PCI. Horizontal propagation is modeled with the effects of extinction, thermal blooming, and turbulence for a focused Gaussian beam. In addition, a nominal AO system is used for phase compensation from a point source beacon. Results show that the development of branch points under strong thermal blooming reduces the possibility of PCI.
Folgt in ca. 15 Arbeitstagen

Preis

64,00 CHF

Artikel, die Sie kürzlich angesehen haben