- Start
- Cryptography and Lattices
Cryptography and Lattices
Angebote / Angebote:
Secret Exponent RSA Revisited ::::::::::::::::::::::::::::::::: 4 Johannes Bl¿ omer and Alexander May Finding Small Solutions to Small Degree Polynomials::::::::::::::::::: 20 Don Coppersmith Fast Reduction of Ternary Quadratic Forms::::::::::::::::::::::::::: 32 Friedrich Eisenbrand and Gunt ¿ er Rote Factoring Polynomialsand 0-1 Vectors:::::::::::::::::::::::::::::::: 45 Mark van Hoeij Approximate Integer Common Divisors::::::::::::::::::::::::::::::: 51 Nick Howgrave-Graham Segment LLL-Reduction of Lattice Bases ::::::::::::::::::::::::::::: 67 Henrik Koy and Claus Peter Schnorr Segment LLL-Reduction with Floating Point Orthogonalization:::::::::: 81 Henrik Koy and Claus Peter Schnorr TheInsecurity ofNyberg-Rueppel andOther DSA-LikeSignatureSchemes with Partially Known Nonces:::::::::::::::::::::::::::::::::::::::: 97 Edwin El Mahassni, Phong Q. Nguyen, and Igor E. Shparlinski Dimension Reduction Methods for Convolution Modular Lattices :::::::: 110 Alexander May and Joseph H. Silverman Improving Lattice Based Cryptosystems Using the Hermite Normal Form : 126 Daniele Micciancio The Two Faces of Lattices in Cryptology:::::::::::::::::::::::::::::: 146 Phong Q.
Fremdlagertitel. Lieferzeit unbestimmt