- Start
- Endvertauschbare Anordnungen und die Struktur der Einheitengruppen modularer Gruppenalgebren, mit 167 Übungsaufgaben
Endvertauschbare Anordnungen und die Struktur der Einheitengruppen modularer Gruppenalgebren, mit 167 Übungsaufgaben
Angebote / Angebote:
In dieser Arbeit studieren wir Einheitengruppen modularer Gruppenalgebren KG. Für die Untersuchung ihres Zentrums entwickeln wir das Konzept der sogenannten endvertauschbaren Anordnung von Algebren- Elementen. Daraus leiten wir auf einfache Weise ab, wie der Exponent des Zentrums allein durch Berechnungen innerhalb der Gruppe G ermittelt werden kann. Anschließend bestimmen wir diesen zum Beispiel für direkte Produkte mit vereinigten zentralen Untergruppen und für Kranzprodukte und geben eine Beschreibung der Gruppen an, für die jener Exponent extremal wird. Das Konzept der endvertauschbaren Anordnung erlaubt neben der Berechnung des Exponenten von Z(rad(KG)) auch (im Falle eines endlichen Körpers K) die Ermittlung der Invarianten dieser abelschen p-Gruppe. Für diese geben wir zwei Beschreibungen an.
Folgt in ca. 5 Arbeitstagen