info@buecher-doppler.ch
056 222 53 47
Warenkorb
Ihr Warenkorb ist leer.
Gesamt
0,00 CHF
  • Start
  • Introduction to Neuro-Fuzzy Systems

Introduction to Neuro-Fuzzy Systems

Angebote / Angebote:

Fuzzy sets were introduced by Zadeh (1965) as a means of representing and manipulating data that was not precise, but rather fuzzy. Fuzzy logic pro­ vides an inference morphology that enables approximate human reasoning capabilities to be applied to knowledge-based systems. The theory of fuzzy logic provides a mathematical strength to capture the uncertainties associ­ ated with human cognitive processes, such as thinking and reasoning. The conventional approaches to knowledge representation lack the means for rep­ resentating the meaning of fuzzy concepts. As a consequence, the approaches based on first order logic and classical probablity theory do not provide an appropriate conceptual framework for dealing with the representation of com­ monsense knowledge, since such knowledge is by its nature both lexically imprecise and noncategorical. The developement of fuzzy logic was motivated in large measure by the need for a conceptual framework which can address the issue of uncertainty and lexical imprecision. Some of the essential characteristics of fuzzy logic relate to the following [242]. . In fuzzy logic, exact reasoning is viewed as a limiting case of ap­ proximate reasoning. . In fuzzy logic, everything is a matter of degree. . In fuzzy logic, knowledge is interpreted a collection of elastic or, equivalently, fuzzy constraint on a collection of variables. . Inference is viewed as a process of propagation of elastic con­ straints. . Any logical system can be fuzzified. There are two main characteristics of fuzzy systems that give them better performance für specific applications.
Folgt in ca. 5 Arbeitstagen

Preis

69,00 CHF