info@buecher-doppler.ch
056 222 53 47
Warenkorb
Ihr Warenkorb ist leer.
Gesamt
0,00 CHF
  • Start
  • Kernel based Fuzzy Clustering for Robust Image Segmentation

Kernel based Fuzzy Clustering for Robust Image Segmentation

Angebote / Angebote:

The goal of image segmentation is partitioning of an image into a set of disjoint regions with uniform and homogeneous attributes such as intensity, color, tone etc. Image Segmentation plays an important role in a variety of applications like robot vision, object recognition, pattern recognition, image segmentation etc. Real digital Images generally contain unknown noise and considerable uncertainty. Although the Fuzzy C Means (FCM) algorithm functions well on noiseless images but it fails to segment images when corrupted with noise. To overcome this problem this book discussed well-known "kernel methods" that have been applied for noisy image segmentation. This book analysed the performance of the four algorithms FCM, Kernelized FCM (KFCM), Kernelized Intuitionistic FCM (KIFCM), Kernelized Type-2 FCM (K2FCM) with four synthetic images in noiseless case as well as when the images are corrupted with salt & pepper and Gaussian noise. The four algorithms are studied and analysed both qualitatively and quatitatively.
Folgt in ca. 5 Arbeitstagen

Preis

66,00 CHF