- Start
- Nuclear Instrumentation II / Instrumentelle Hilfsmittel der Kernphysik II
Nuclear Instrumentation II / Instrumentelle Hilfsmittel der Kernphysik II
Angebote / Angebote:
Ionization Chambers in Nuclear Physics.- I. Introduction.- II. General principles of ionization chamber operation.- III. Events following ionization.- IV. Utilization of the signal.- V. Applications.- Geiger Counters.- I. Introduction.- II. The gas discharge mechanism.- III. Special topics.- IV. Design and use considerations.- References.- Scintillation and ?erenkov Counters.- I. Photomultiplier tubes.- II. Inorganic phosphors.- a) Sodium iodide.- b) Energy resolution with scintillation spectrometer.- c) Cesium halide phosphors.- d) Lithium iodide phosphors.- e) Other inorganic phosphors.- III. Organic phosphors.- IV. ?erenkov counters.- V. Scintillation and ?erenkov counters for high energy ?- and ?-ray spectroscopy.- a) General.- b) Examples of high energy spectrometers.- The Proportional Counter as Detector and Spectrometer.- A. Historical.- B. The principle of operation.- I. The multiplication process.- II. Quenching of the pulse.- III. Electron affinity of gases and vapours.- IV. Effect of geometrical form.- C. The construction of proportional tubes.- D. The tube as spectrometer.- I. Avalanches and saturation.- II. Drift velocity and pulse shape.- III. The storage of data.- E. Fields of application.- I. The source as gas.- II. The use of solid sources.- III. Support and its effects.- IV. Sensitivity to electromagnetic radiation.- V. Fluorescence yield and escape peak.- F. Summation effects.- G. High sensitivity work.- I. Detection within an energy band.- II. The nature of the background.- III. Effective elimination of container.- H. Applications of proportional tubes.- I. Form of beta spectra.- II. Study of electron capture, internal conversion, inner bremsstrahlung.- III. Measurement of specific ionization and meson studies.- The Coincidence Method.- I. General and historical introduction.- II. Coincidence circuits of moderate resolutions (? 1 ? sec).- III. Fast coincidence circuits.- IV. Coincidence measurements.- Cloud Chambers.- I. The production of tracks in a cloud chamber.- a) The ionization process.- b) The condensation of vapor on ions.- c) The production of supersaturation by an adiabatic expansion.- d) Expansion cloud chambers.- e) Diffusion cloud chambers.- II. The photography of cloud chamber tracks.- a) Statement of the problem.- b) Some other aspects of the problem.- III. The measurement of cloud chamber tracks.- IV. Concluding remarks.- Acknowledgements.- General references.- The Bubble Chamber.- 1. Introduction.- 2. History of the development of the bubble chamber.- 3. Construction and operation of the bubble chambers.- 4. Microscopic mechanism of bubble nucleation by ionizing events.- 5. Photography of bubble chambers.- 6. Measurements with bubble chambers.- 7. Applications of bubble chambers.- Nuclear Emulsions.- A. Introduction.- B. Principles of particle identification and velocity measurement.- I. Ionization and range.- II. Multiple Coulomb scattering.- III. Magnetic methods.- C. Techniques.- I. Characteristics of emulsions.- II. Types of emulsion.- III. Treatment before exposure.- IV. Exposure, and preparation for development.- V. Processing.- VI. Microscopy.- Acknowledgments.- Appendix: Supplemental bibliography.- Detection of Neutrons.- A. Interactions used for detection.- B. Detecting devices.- C. Applications to various types of measurements.- References.- High Energy Neutron Detectors.- I. General considerations.- II. Detecting devices..- III. Application of detectors to neutron measurements.- General references.- Sachverzeichnis (Deutsch/Englisch).- Subject Index (English/German).
Folgt in ca. 5 Arbeitstagen